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VARIATIONS IN A COMPOSITE
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Abstract-In any randomly inhomogeneous elastic medium. it is well known that the mean
stress may be related to the mean strain through a nonlocal operator. which reduces to an
ordinary tensor of moduli when applied to a slowly-varying mean field. This study discusses a
corresponding relation between the mean momentum density and the mean velocity. Attention
is focused on this feature of overall behaviour by considering a model medium in which only
the density varies. When the medium is statistically uniform. the "overall mass density" op
erator has the form ofa convolution in time and space and it is convenient to discuss its combined
Laplace and Fourier transform. The operator is introduced via a brief consideration of its
representation as a perturbation series but the bulk of the work is devoted to establishing bounds
of "Hashin-Shtrikman" type for the eigenvalues of its combined transform. when the transform
variables are real. Explicit bounds for a two-phase medium with a particular form for its two
point correlation function are given. They define the eigenvalues within 0.5 percent when the
ratio of the two densities is two and remain close enough to give a good indication of overall
behaviour at density ratios as high as ten.

I. INTRODUCTION

The motion of a body is governed by the equation of motion

div U' + f = iJ, (I.I )

where U' denotes the stress tensor, f represents body force, p is momentum density.
and the superposed dot represents differentiation with respect to time. If the body is
elastic. with tensor of elastic moduli L and mass density p, then U' and p are related to
the displacement u through the constitutive relations

U' = Le, p = pit, (1.2)

where e represents the infinitesimal strain tensor associated with u. The motion is
completely specified by (1.1), (1.2), plus suitable initial and boundary conditions,

Suppose now that the body is a composite, so that Land p vary in a complicated
manner with position x. It is common to view the body as a random medium and.
instead of solving (1.1), (1.2), to attempt to construct equations which determine the
ensemble average (u) of u. Equation (I.l) can be averaged immediately to give

div (U') + f = (P).

Ensemble averaging (1.2) gives relations of the same form, namely

(1.3)

if L, p are defined so that

(U') = L(e),

L(e) = (Le),

(p) = p(ti),

p(U) = (pli).

(1.4)

(1.5)

The entities L. p defined by (1.5) can be termed "overall" properties of the composite.
In the case of elastostatics, it is well known that (1.5) defines L as a non-local

operator (see, for example, Beran and McCoy[!], Diener, Hurrich and Weissbarth[2],
Willis[3]), which reduces to an ordinary tensor of moduli when applied to any field (e)

805



806 J. R. WILLIS

that varies sufficiently slowly relative to the microscale of the composite. For dynamic
problems, however, the usual approach is to seek directly equations which define the
mean wave (u) without assigning a meaning to individual terms (see, for example. Karal
and KelIer[4], McCoy[5], Varadan, Varadan and Pao[6], Devaney[7]. Tsang and
KO!lg[8]). The representation of pis discussed in this article. In fact. attention is focused
exclusively on p, by considering an artificial "model" medium, in which the mass
density p varies but the modulus tensor L does not. Thus, averaging the first ofequations
(1.2) gives

(cr) = L(e), ( 1.6)

so that L reduces to the ordinary tensor L or, if it is still considered as an operator, L
multiplied by a delta function.

Section 2 discusses the representation of p from the standpoint of perturbation
theory, valid for smalI fluctuations in p. Then, in Sections 3 and 4, its characterization
by use of the variational principle of Willis[9] is considered. Bounds are obtained for
a quadratic form associated with the Laplace transform of p (taken with respect to
time) and these induce bounds on corresponding Fourier components. The procedure
is analogous to one employed to characterize L in the case of elastostatics by Diener,
Hurrich and Weissbarth[2] but the reasoning as presented is more closely related to
that of Willis[3]. Section 5 discusses the particular case of a two-component material.
for which results can be expressed in terms of a single two-point correlation function.
Calculations performed for a particular choice of this function yield bounds that differ
by less than one percent when the ratio of the two densities is two, by less than five
percent at a density ratio of four, and by up to twenty-five percent at a density ratio
of ten. Thus, for a practicalIy useful range of density ratios, the Laplace transform of
pis characterized quite accurately, independently of higher-order statistics, but knowl
edge of the latter would be required to achieve corresponding accuracy at very high
density ratios.

2. PERTURBATION THEORY

This section essentialIy employs the method of smoothing of Karal and KelIer[4]
but it is convenient to present this in a manner that introduces notation used later. An
infinite body is considered, in which the displacement u is generated by a body force
f which decays suitably at large 1x I. Combining (1.1) and (1.2) gives the usual equation
of motion

div(Le) + f = pli,

which can be written in the alternative form

div (Le) + f - Tr = PoIi ,

(2.1 )

(2.2)

where Po is the density of a "comparison medium," which wiIl be taken uniform, and
the "momentum polarization" 1T, which was introduced by Willis[IO, 11], is defined
as

1T = (p - Po)iJ. (2.3)

In terms of the Green's function Go(x, t) of the comparison medium, the solution of
(2.2) is

U(x, t) = Jdr' Jdr' Go(x - x', f - f') [f(x', f') - -ir(x', f')]

or, more briefly,
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1/ = Go(f - ir),
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(2.4)

so that. in this context. Go is an operator. Then. from (2.3) and (2.4). 'l1' satisfies the
equation

'l1' + (p - Po)Go1T = (p - Po)Gof. (2.5)

It is convenient to eliminate f from (2.5) by subtracting from it the time derivative of
the average of (2.4). Thus,

1T + (p - Po)Go (1T - (1T) = (p - Po)(ti). (2.6)

Equation (2.6) can be solved by iteration. if p - po is small; truncating at the first non
trivial term gives

1T = [p - Po - (p - Po)Go (p - (p)](u).

Now from (1.5) and (2.3).

Therefore, from (2.7) and (2.8).

p = (p) - «p - (p)Go (p - (p)).

(2.7)

(2.8)

(2.9)

approximately, when p varies only slightly. In (2.9), symmetry has been maintained
by replacing a factor Po by (p); the averaging ensures that this factor is actually multiplied
by zero. This allows the right side of (2.9) to be expressed in terms of the correlation
coefficient

I ( ") _ «p(x) - (p(x»)) (p(x') - (p(x'))))
1 x,.\ - (p2(X)) _ (p(x)? (2.10)

If the medium is statistically uniform, (p(x») and (p2(X») are independent of x. and II
depends upon x, x' only in the combination x - x'. In this case, (2.9) can be given in
the explicit form

where H is a convolution operator. like Go, with kernel

H(x, t) = Go(x, t)h(x).

(2.11)

(2.12)

This result is equivalent to one given by Karal and Keller[4]. In its present form. it
demonstrates explicitly that p is a nonlocal operator; also. it is expressed in notation
that will be employed in the succeeding sections. which consider the representation of
pwhen the density fluctuations may be large.

3. VARIATIONAL FORMULATION

The stationary principle

(3.1)

where

(3.2)
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the symbol * denoting convolution with respect to time. follows directly from the in
tegral equation (2.5). It is a special case of a principle given by WilIis[9], who also
showed that both a maximum and a minimum principle could be generated for the
Laplace transform of iJt, by suitable choices of Po. The reasoning of Willis[9] can be
summarized quite simply in the present case. From this point onwards, only Laplace
transformed equations will be considered and, to avoid introducing new symbols, the
Laplace transform of a function g(x, 1) will be written as g(x, s) or, still more briefly
when the context makes the meaning clear, simply as g. Also, the convolution * be
comes an ordinary product, so that the * will be dispensed with.

When the transform variable s is real, the Laplace transform of the system (2.1)
implies the minimum energy principle

<zF(u) s <zF(u*), (3.3)

where u is the actual solution, u* is any field which decays suitably at large Ix I and

(3.4)

e* being the strain associated with u*. Since u satisfies the Laplace transform of (2.1),
it follows that

<zF(u) = - ~J dxfu.

Now, motivated by (2.4), take

u* GoU - S1l'*)

and define

(3.5)

(3.6)

Then

(1* = Le*, p* = spou* + 1l'*. (3.7)

div (1* + f = sp*

for any choice of 1l'*, and 1l'* is the actual polarization 1l' if it satisfies

1l'* = s(p - Po)u*.

(3.8)

(3.9)

In this case, u* = u, (1* = (1. and p* = p also. Elementary manipulation, using Gauss'
theorem with eqns (3.7). (3.8), yields

<zF(u) = - ~ f dx fll S i}t'(1l'*) - ~ f dr fGof

+ ~ f dx [s(p - Po)u* - 1l'*F/(p - po), (3.10)

where i}t'(1l'*) now represents the Laplace transform

i}t'(1l'*) = Jdx [S1l'*Gof - h*2/(p - Po) - S; 1l'*G01l'*] . (3.11)

Therefore. if Po is chosen so that po ;::: p at each point x (with the agreement that 1l'*
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= 0 wherever Po = p), it follows from eqn (3.10) that

::f(u) = - ~ f dx fll :s ~(7T*) - ~ f dx fGof.

809

(3.12)

Still keeping s real, the Laplace transform of the system (2.1) also implies the
complementary energy principle

<§(cr, p) :s <§(cr*, p*),

where

for any pair of fields (cr*, p*) that satisfy

div cr* + f = sp*.

(3.13)

(3.14)

(3.15)

If cr*, p* are generated from 7T* via eqns (3.6), (3.7), manipulations similar to those
described above give

<§(cr,p) =!Jdx fu :s!JdxfGof - ~(7T*) - !fdxPo[S(P - Po)u* - 7T*F (3.16)
2 2 2 pep - Po)

Therefore, if Po is chosen so that Po :s P everywhere,

<§(cr, p) = ~ f dx fll :s ~ J dr fGof - ~(7T*). (3.17)

Reasoning of this kind was first given by HiII[ 12] in the context of elastostatics, the
analogue of (3.1) being the variational principle of Hashin and Shtrikman[ 13].

Since inequalities are not disturbed by ensemble averaging, it follows from eqns
(3.12) and (3.17) that

~ f dx f (u) (~) ~ f dx fGof - (~(7T*», (3.18)

so long as Po is chosen so that Po 2= (:s) p at each point x, for every possible realization
of the composite. Here, 7T* is any trial polarization, which may be chosen differently
for each realization of the composite.

4. BOUNDS

Now specialize to a composite which consists of n constituents, or phases, the rth
phase having density Pro though all have the same tensor of moduli L. The density at
x is conveniently represented in the form

"

where

p(x) = L Prfr(x),
r= I

fr(x) = I if x E phase r

= 0 otherwise.

(4.1)

(4.2)
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Correspondingly, consider the field

J. R. WILLIS

n

11'* = L 11'r(x)fr(x),
r=1

(4.3)

where the 11'r(x) are functions of x only, so far unspecified. Now the probability of
finding phase r at x is

Pr(X) = (fr(x»

and the probability of finding phase r at x and phase s at x' is

PrAx, x') = (fr(x)fAx'».

(4.4)

(4.5)

If the composite is statistically uniform, pr is independent of x and prs depends only
on (x - x'). When eqn (4.3) is substituted into (~), there results

(~(11'*» =f dxL*. [spr11'rGof - !Pr11'~/(Pr - Po) - ;211'".,*, GOPr.,11', J} . (4.6)

This quadratic expression involving the n functions 11'r(x) is stationary when the 11',.
satisfy

II

Pr11'r/(pr - Po) + S2 L GOPr.,·11's = sprGof;
.\= 1

the corresponding stationary value is

from the symmetry of Go, where ('IT*) now denotes

II

('IT*) = L Pr11'r(x).
r=1

(4.7)

(4.8)

(4.9)

To solve (4.7), it is convenient to eliminate Gof in favour of (It*), by employing the
relation

Thus,

(u*) = Go(f - s('IT*».

n

(4.10)

Pr'ITr/(Pr - Po) + S2 L GO(Pr., - PrP,)'lTs = SPr(U*). (4.11)
.v= I

Suppose that solving these equations yields

('IT*) = S ll(u*)

for some operator ll. Then, from eqns (4.10) and (4.12),

(u*) = Cf,

(4.12)

(4.13)
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where

If, correspondingly,

(u) = Gf,

it follows from (3.18), (4.10) and (4.13) that

If . If -- dx fGf ~ - dx fGf,
2 IS) 2

when Po ~ (S) pr for all r.
The result (4.16) can be given symbolically in the shorter form

G ~ G,
IS)

the order relations implying (4.16). Correspondingly,

But by definition of G, U = Gf implies

div (Le) + f = S2 pU •

Therefore,

Also, inverting eqn (4.14),

and so, since Go is the Green's function for the comparison body,

where

p = Po + n.

811

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

Equation (4.20) demonstrates that G is the Green's function for a body whose "mass
density operator" is p. It may be noted, too, that (4.21) is also the estimate for p that
would follow from (2.8) with (11) approximated by (11*).

In view of (4.19) and (4.20), the result (4.18) can be given in the equivalent form

(4.22)

whenever Pr S (~) po for all r. It is emphasised again that the inequality symbols in
(4.22) imply inequalities between quadratic forms, of the type that appear in (4.16).
The development given does not rely on statistical uniformity. However, when the
body has this property, equations (4.11) are insensitive to translations and the kernel
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of the operator n, and hence p, depends on x - x' only. It is also an even function of
x - x', because the functions P,.., are even. The exact operator pshares these properties:
this could be recognised by considering its representation as a series, as in Section 2.
for example. Thus, both p and p are convolution operators with respect to x. Use of
Parseval's theorem therefore gives

Jdx u(x) (pu) (x) = Jdk Ii(k)p(k)lI(k). (4.23)

where u(k) is written for the Fourier transform of u(x) and u(k) is its complex conjugate,
also equal to u( - k) since u(x) is real. The kernel of p is real and even in x. so p(k) is
real and even in k. The inequalities (4.22) may therefore be given in the form

Jdk u(k)[p(k) - p(k)]u(k) (;) O.

for any choice of u(k) such that u(k) = 1I( - k). and it follows that

u[p(k) - p(k)]l1 $ 0
(~)

(4.24)

(4.25)

when p,. $ (~) po for all r. for every u and k. Thus. (4.22) implies inequalities for the
eigenvalues of p(k) - p(k). and bounds on the eigenvalues of p(k) whenever p and p
are coaxial as they will be. for example. if the composite is isotropic. It is. perhaps,
advisable to reiterate that phas already been Laplace transformed and that the results
of this section apply when s is real.

5. EXAMPLE: TWO·PHASE COMPOSITE

The solution of eqns (4.11) takes a particularly simple form for a two-phase com
posite. The relations

PI + P2 = I. PII + PI2 = PI, PI2 + P22 = P2 (5.1)

imply. in the case of a statistically uniform medium. that

(5.2)

where the function h depends upon x - x' and h(O) = I. Also. h - 0 as Ix - x' I
x so long as the composite displays no long-range order. Direct calculation shows that,
for the two-phase composite. the function h in (5.2) coincides with the h defined for a
general composite by (2.10).

Substitution of (5.2) into (4.11) gives

r = 1.2. (5.3)

where H is now the Laplace transform of the operator defined by (2.12). A formal
solution to these equations is easy to obtain and yields

for use in conjunction with (4.12). Since the operations in (5.4) are convolutions. Fourier
transforming leaves (5.4) unchanged, except that now the operations are just matrix
multiplications.

Bounds for p are obtained from (5.4) by choosing po = PI or P2. Assuming, to be
definite, that PI > P2. the choice Po = P2 generates a lower bound. When Po = P2, (5.4)
simplifies and pcan be given in the form
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(5.5)

The corresponding upper bound. obtained by setting Po = PI, is obtained by inter
changing the subscripts I and 2 in (5.5).

So far. the bounds given from (5.5) apply to a composite whose tensor of moduli
L may be anisotropic. and which may have any correlation function II. Explicit results
are now given. for the case of an isotropic composite. so that L is isotropic and II is a
function of Ix - x' Ionly. If L is characterized by Lame moduli A. fl., the comparison
material has wave speeds a. 13. where

(5.6)

and the Fourier transformed Green's function Go(k. s) satisfies the equations

(5.7)

Therefore. solving (5.7),

Inverting (5.8) gives

_ I { e-sl.rl/~ I iJ2 [e-.'I.rl/a - e-.'I.rl/~J }
lGo(x. s)]ij - 4- 'Oij~II + "2 -iJiJ I I .

1Tpo ..... X S Xi xi X

(5.8)

(5.9)

These results are. of course. well-known.
It is necessary now to multiply (5.9) by hex) and then transform back. For the

purpose of illustration, this procedure is carried through for the particular correlation
function

(5.10)

Since the resulting H(k, s) is an isotropic function. it can be represented in the form

kiki (kikj )[H(k. s)]ij = Ikl2 H I ( I k I ) + aij - m Hu ( Ik I ). (5.11)

The advantage of this form is that H has eigenvalues HI. H II and. if H is represented
by

(5. 12)

and K is an isotropic function, represented similarly. their product has representation

(5.13)

Also. since the identity has representation (I. I).

To find HI. H u • it may be noted that

[H(k. s)L = HI + 2HIl

and. when k = (0. o. I k I ).
[H(k. S)h3 = HI.

(5.14)

(5.15)

(5.16)
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Considering first Hjj , it follows from (5.9) that

I {e -,'I.fl/u 2e-"I-'I/I3}

[Go(x, s)LJ = 41Tpo a 2 1x I + 132 I X I . (5.17)

Multiplying by e-Ixlla and Fourier transforming then gives

Evaluating HI using (5.16) requires rather more work. First,

(5.18)

where cos 6 = X3/ Ix I. Taking the Fourier transform of (5.19) involves exp (ik.x) and,
when k = (0, 0, I k I ), this reduces to exp (i I k II x Icos 6). The relevant integrals are
summarised in the Appendix; the final result is

(5.20)

(5.21)

where

F( ) = {(s/-y + lIa) [I (s/-y + l/a)2] __1_ [I 3(s/-y + I/af]
-y S2 Ik I + Ik 12 -ys Ik I + Ik 1

2

+ 2(s/-y + I/a)} tan _ I ( I k I )
-y2 I k 13 s/-y + I/a

(s/-y + l/a)2 3(s/-y + I/a) 1 [ (s/-y + I/af ]- + - 1 + -;-:--;-::--'-~---:--::;
S2 I k 1

2 -ys I k 1
2 -y2 I k 1

2
I k 1

2 + (s/-y + lIaf .

(5.22)

Then, from eqn (5.5), when Po = P2,

and each component in (5.23) provides a lower bound for the corresponding component
of p(k, s). As mentioned above, upper bounds are obtained simply by interchanging PI
and P2, and PI and P2.

Bounds have been calculated, using a simple computer program that evaluates
(5.23), for a variety of choices for the parameters PI/P2, PI, I k I a and as/132. where 132
= (~/P2)1/2 is the faster of the two shear wave speeds. Poisson's ratio was taken as
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Table I. Bounds for the eigenvalues of ~ for the case Pl/p: = 2. PI = 0.3. when (/.~/~z = 2.

1092 (Ik la) Py!P2 PIl/P2

lower upper lower upper

-5 1.235 1.244 1.235 1.244

-4 1.235 1.244 1.235 1.244

-3 1.236 1.244 1.235 1.244

-2 1.236 1.245 1.236 1.244

-1 1.238 1.246 1.237 1.245

0 1.245 1.252 1.240 1.248

1 1.261 1.265 1.251 1.256

2 1.283 1.284 1.272 1.273

3 1.295 1.295 1.289 1.290

4 1.299 1.299 1.297 1.297

5 1.300 1.300 1.299 1.299

Table 2. Bounds for the eigenvalues of p for the case Pl/pz =: 4. PI =: O.S. a.~/~z I.

loq211klal PlP2 Pn !P2

lower upper lower upper

~5 2.139 2.242 2.139 2.242

~4 2.139 2.242 2.139 2.242

~3 2.141 2.242 2.140 2.242

~2 2.146 2.245 2.143 2.243

~1 2.164 2.256 2.1S4 2.249

0 2.223 2.292 2.192 2.269

1 2.340 2.370 2.286 2.325

2 2.444 2.479 2.403 2.411

3 2.486 2.486 2.469 2.470

4 2.497 2.497 2.492 2.492

5 2.499 2.499 2.498 2.498

Table 3. Bounds for the eigenvalues of p for the case pdpz = 10. PI = 0.3. when asllh =: I.

1092 (Ik la) P1/r2 P:a:/P 2

lower upper lower upper

-5 2.158 2.662 2.158 2.662

-4 2.159 2.662 2.159 2.662

~3 2.162 2.664 2.160 2.663

-2 2.174 2.671 2.167 2.666

-1 2.221 2.697 2.195 2.678

0 2.384 2.791 2.295 2.722

1 2.797 3.038 2.590 2.868

2 3.319 3.386 3.094 3.181

3 3.594 3.602 3.482 3.493

4 3.675 3.675 3.638 3.639

5 3.694 3.694 3.684 3.684

SIS
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as -10·0

------------------ 1·6 ------------••• -----

-5 o

Fig. I. Bounds for Pllp~, plotted against Ik I C/. for the three values C/.\/I3~ = (!.i', I. 10. The
composite has Pl/p~ = 4. PI = 0.5. and Poisson's ratio is 0.25.

0.25, so that A = j.L. Sample results are presented in Tables 1-3 and in Fig. I. Table
I shows lower and upper bounds for PI(k, s) and PH(k. s), for a medium with density
ratio PI/P2 = 2 and PI = 0.3, when as/132 = 2, for a range of-values of I k Ia. There
is less than one percent difference between the bounds, so that. if Pwere estimated as
lying mid-way between the bounds, the error would be at most 0.5 percent. The dif
ference between PI and PH is small, so that the tensor P is almost a scalar (that is. a
scalar times the Kronecker delta). It may be noted, however. that for values of I k I a
in the range 2 to 8, the lower bound for PI is greater than the upper bound for PH, so
that Pis definitely not exactly a scalar operator. The table also shows clearly that P
varies with k so that it is a non-local operator. Tables 2 and 3 show similar results, for
larger density ratios. In Table 2, PI/P2 = 4, PI = 0.5 and as/132 = I. The bounds differ
by up to five percent. Since this difference is visible on a diagram, this density ratio
and volume fraction were selected for the graphical presentation of Fig. I, which shows
lower and upper bounds for p,(k, s), plotted against Ik Ia. for the three choices as/132
= 0.1, I, 10. Thus, the middle pair of curves corresponds exactly to Table 2. The figure
displays trends that can also be confirmed analytically. For any fixed value of k. both
the lower- and upper-bound estimates for PI, PH (and therefore also Pitself) tend to (p)
(that is, just the mean density) as as/132 tends to zero. Also, for any fixed value of s,
the same limit is approached as I k Ia tends to infinity. Finally. if Ik Ia -. 0 and as/
132 -. :lC, Ptends to the inverse "law of mixtures" value,

P-. 1/(l/p).

Furthermore, the eigenvalues of p(k, s) appear always to lie between these limits which,
in analogy with terminology for elastic constants, might be termed Voigt «p) and Reuss
(I/(1/p) estimates. For the parameter values used in Fig. I, (p) = 2.5p2 and 1/(I/p) =
I.6P2' Table 3 shows what happens when the density ratio is increased to 10. The
bounds become more widely separated (differing by up to 25%) but the difference
between the Voigt and Reuss estimates also increases, so that Phas more opportunity
to vary. The bounds still give a good indication of this variation but higher order sta
tistics would be needed to pin it down more precisely.

Finally, it is remarked that the expressions given for p(k, s) would remain valid if
k and s were taken complex and could be used to provide approximate dispersion
relations for mean plane waves. However, they would lose the precise status that they
have as bounds when k and s are real.
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APPENDIX-SOME FOURIER TRANSFORMS

Here. the Fourier transforms of individual terms that appear in eqn (5.19) are recorded.
First. the term

(3 cos
1

.,8 - ,I) [t}-(\/u+ Iltll~\1 _ e-(.,/(.i~ 1/t1l1\1}

41TPnS- I x I

can be transformed. when k = (0. o. I k I ). by employing polar coordinates (I x I. 6. ell). to give

(A,))

having set II = cos 6 and performed the trivial integration with respect to ell. Integration by parts with respect
to II gives

IA.2)

The integral with respect to Ix I is now elementary and so. after that. is the integral with respect to 1/ that
remains. The result is

(A.3)

where

I {(Sl",/ + Ila) ( (sl",/ + I/a)~) _I ( 1 k I ) _ (sl",/ + Ila)~}
Fd",/) = -, I J. I I + 1 I' tan 1J. 1_' . IA.4)

PuS-"; k - sl"'/ + I/a h

The term

can be treated similarly. Its transform can be found from

I LX IIF~("1l = -2- dlxl dll(3112
- I)exp{[ilkll/- (sl",/ + I/a)llxil

pn'YS n - I

which. upon performing the elementary integrations. reduces to

IA.5)

F,('Y) = I {_ (I + 3(sl'Y + ,'Ia)~) tan - I ( I k I ) + 3(S/~ :1 Ila)} . (A.6)
• Po'YS I k I I k \. sl'Y + Iia

The term containing the factor cos~ 6 in (5.19) follows from

I LX IIF 3(-y) = --, I x I d I x I 112dll exp {Ii I k 11/ - (.\1",/ + I/a)] I x I }.
2pu-Y' n - I

which reduces to

(A.7)

I {2(SI'Y + Ila) - I ( I k I ) [ (sl",/ + I/(I/~ J} (A.8)
F,(-y) = 2' I tan - I + I' , .. pn'Y I k ,- I k sl-y + Jla I k • + (.\1"'1 + llel/-

The function F(",/) in eqn (5.22) is given by

(A.9)


